Integration of the spectrum including uncertainty calculation.
Usage
signal_integrate(object, background, ...)
# S4 method for class 'GammaSpectrum,missing'
signal_integrate(object, range = NULL, energy = FALSE)
# S4 method for class 'GammaSpectrum,GammaSpectrum'
signal_integrate(object, background, range = NULL, energy = FALSE)
# S4 method for class 'GammaSpectrum,numeric'
signal_integrate(object, background, range = NULL, energy = FALSE)
# S4 method for class 'GammaSpectra,missing'
signal_integrate(object, range = NULL, energy = FALSE, simplify = TRUE)
# S4 method for class 'GammaSpectra,GammaSpectrum'
signal_integrate(
object,
background,
range = NULL,
energy = FALSE,
simplify = TRUE
)
# S4 method for class 'GammaSpectra,numeric'
signal_integrate(
object,
background,
range = NULL,
energy = FALSE,
simplify = TRUE
)
Arguments
- object
A GammaSpectrum or GammaSpectra object.
- background
A GammaSpectrum object.
- ...
Currently not used.
- range
A length-two
numeric
vector giving the energy range to integrate within (in keV).- energy
A
logical
scalar: use the energy or count threshold for the signal integration- simplify
A
logical
scalar: should the result be simplified to amatrix
? The default value,FALSE
, returns alist
.
Value
If simplify
is FALSE
(the default) returns a list
of numeric vectors
(the signal value and its error), else returns a matrix
.
Details
The function supports two integration techniques (see Guérin & Mercier 2011), the (1) count threshold integration and the (2) energy integration method:
The count integration technique (energy = FALSE
) integrates
all counts in given range
:
$$ A = \frac{\Sigma_{i}^{N}S_i}{t_{live}} $$
Contrary, the energy integration techniques is the integrated cross-product of counts and corresponding energy per channel:
$$ A = \frac{\Sigma_{i}^{N}S_i \times E_i}{t_{live}} $$
\(A\) is the area, \(S_i\) is the signal in the \(i^{th}\) channel, \(N\) the number of channels, \(E_i\) the energy of the corresponding channel in keV. \(t_{live}\) is the live time of the measurement in s.
For calculating the uncertainties, Poisson statistics are assumed and hence the errors is calculated as:
$$ \sigma_A = \frac{\sqrt{A}}{t_{live}} $$
References
Guérin, G. & Mercier, M. (2011). Determining Gamma Dose Rates by Field Gamma Spectroscopy in Sedimentary Media: Results of Monte Carlo Simulations. Radiation Measurements, 46(2), p. 190-195. doi:10.1016/j.radmeas.2010.10.003 .
Mercier, N. & Falguères, C. (2007). Field Gamma Dose-Rate Measurement with a NaI(Tl) Detector: Re-Evaluation of the "Threshold" Technique. Ancient TL, 25(1), p. 1-4.
See also
Other signal processing:
baseline
,
peaks_find()
,
peaks_search()
,
signal_slice()
,
signal_split()
,
signal_stabilize()
,
smooth()